石油与天然气化工  2019, Vol. 48 Issue (1): 91-98
本文选项
  • PDF全文阅读
  • 本文摘要
  • 本文图片
  • 参考文献
  • 扩展功能
    电子期刊订阅
    RSS
    本文作者相关文章
    张立侠
    郭春秋
    天然气偏差因子计算新方法
    张立侠 , 郭春秋     
    中国石油勘探开发研究院
    摘要:天然气偏差因子是油气藏工程相关领域中的重要参数,它在采油采气、气体计量、管线设计、地质储量和最终采收率的估计等油气勘探、开发、化工的诸多工程应用中都不可或缺, 快速准确地确定该参数尤为关键。为此,基于Nishiumi-Saito状态方程结合多元非线性回归分析,提出了一种新的偏差因子关系式,相应形成新的计算偏差因子的方法,利用该方法可准确计算整个压力范围内的气体偏差因子。利用偏差因子标准数据对该方法及油气藏工程中常用的DPR、HY、DAK方法进行了对比。误差分析表明,该方法在常用压力范围和高压下的平均绝对误差分别为0.357%、0.066%,其计算精度比DPR、HY和DAK方法高。
    关键词天然气    偏差因子    状态方程    关系式    迭代    
    A new method for determining the natural gas compressibility factor
    Zhang Lixia , Guo Chunqiu     
    PetroChina Research Institute of Petroleum Exploration & Development, Beijing, China
    Abstract: The compressibility factor (Z-factor) of natural gas, a critical parameter in many engineering calculations related to oil and gas reservoir engineering, is absolutely necessary in numerous engineering applications of oil and gas exploration, development, and chemical engineering, such as oil and gas production, gas metering, pipeline design, estimation of original gas in place, ultimate recovery and so on. Therefore, it is especially crucial to determine this parameter quickly and accurately. Based on the Nishiumi-Saito (1975) equation of state and multivariate nonlinear regression analysis technique, a new Z-factor correlation is presented in this paper, by which gas compressibility factor in the whole pressure range can be precisely predicted with iteration method. The calculated results of the new method proposed here and DPR, HY, DAK correlations commonly used in oil and gas reservoir engineering are compared with standard data of Z-factor. The results of error analysis indicate that for the cases of general pressure range and relatively high pressure range, the average absolute error of the new method is 0.357% and 0.066% respectively, the calculation accuracy of which is distinctly better than the above three classical methods.
    Key words: natural gas    compressibility factor (Z-factor)    equation of state    correlation    iteration    

    天然气偏差因子(Z)是油气藏工程、天然气化工等领域常用的重要参数,它表征了某一温度、压力条件下相同数量真实气体与理想气体体积的比值,通常又称压缩因子或偏差系数。确定偏差因子的方法主要有3类,即:实验测量法、图版法(查表法)和计算法。实验测量法虽然直接可靠,但耗时、成本高;图版法(查表法)难以得到连续的值,因此计算法以其简便性和实用性被广泛应用。

    计算法主要是利用能够代表偏差因子标准图版的关系式进行编程计算,其中显式Z因子关系式多是通过回归分析总结得到,如Beggs、Gopal、Kumar、Azizi、Heidaryan和Salarabadi、Heidaryan和Moghadasi等提出的表达式[1-8];而隐式关系式则一般源于状态方程。状态方程有Van der Waals方程、RK方程、SRK方程、PR方程等立方型状态方程[9-19],以及Kamerlingh Onnes方程、Beattie方程、BWR方程、Strobridge方程、Carnahan方程、Morsy方程、BWRS方程、LeE-Kesler方程等维里状态方程[20-35]。维里状态方程在偏差因子计算方法的发展过程中具有重要意义,例如:Dranchuk等利用BWR方程拟合1500组偏差因子数据提出了8系数偏差因子表达式即DPR方法[36-37]; Hall和Yarborough在Carnahan-Starling硬球方程的基础,提出了一种Z因子关系式即HY方法[27-28];Dranchuk和Abou-Kassem则应用BWRS方程提出了一种11系数偏差因子计算式即DAK方法[38]。这3种方法是应用状态方程计算天然气偏差因子的经典方法[39-44],在一定范围内它们均能比较准确地代表Standing-Katz图版[37],其中以DAK方法的计算精度最高[45-48],但其在高温高压下的误差也稍大。

    为更加准确地预测整个压力范围(0.2≤ppr≤30.0)内的天然气偏差因子,本文基于Nishiumi-Saito方程[49],提出一种新的偏差因子计算方法,以期为油气藏工程相关研究者提供参考。

    1 气体状态方程分析

    利用状态方程拟合偏差因子数据进而总结经验关系式的方法是计算天然气偏差因子的有效工具。Benedict等提出的BWR方程颇具代表性[22-24],因其能比较准确地计算气体的热力学性质而迅速得到应用。Dranchuk基于BWR方程提出了DPR方法[36], 随后许多学者对其进行了修正和推广,以便更加准确、有效地预测更大温度与压力范围内的纯物质和混合物的热力学性质参数。其中,Starling修正的BWR方程(即BWRS方程)应用更为广泛[30-34],DAK方法便是基于此。

    然而,Nishiumi和Saito指出BWRS方程仍不能有效地预测低对比温度下的热力学参数[49],他们提出了另一种广义的BWR方程,称之为Nishiumi-Saito方程,其表达式如式(1):

    $ \begin{array}{l} p = RT\frac{\rho }{M} + \left( {{B_0}RT- {A_0}- \frac{{{C_0}}}{{{T^2}}} + \frac{{{D_0}}}{{{T^3}}}- \frac{{{E_0}}}{{{T^4}}}} \right){\left( {\frac{\rho }{M}} \right)^2} + \\ \;\;\;\;\;{\rm{ }}\left( {bRT - a - \frac{d}{T} - \frac{e}{{{T^4}}} - \frac{f}{{{T^{23}}}}} \right){\left( {\frac{\rho }{M}} \right)^3} + {\rm{ }}\\ \;\;\;\;\;\;\alpha \left( {a + \frac{d}{T} + \frac{e}{{{T^4}}} + \frac{f}{{{T^{23}}}}} \right){\left( {\frac{\rho }{M}} \right)^6} + \\ \;\;\;\;\;{\rm{ }}\left( {\frac{c}{{{T^2}}} + \frac{g}{{{T^8}}} + \frac{h}{{{T^{17}}}}} \right){\left( {\frac{\rho }{M}} \right)^3}\left[{1 + \gamma {{\left( {\frac{\rho }{M}} \right)}^2}} \right] \times \\ \;\;\;\;\;\;\;{\rm{exp}}[-\gamma {\left( {\frac{\rho }{m}} \right)^2}] \end{array} $ (1)

    式中:p为压力,Pa;R为摩尔气体常数[50-51],8.314 459 8 J/(mol·K);T为温度,K;ρ为密度,kg/m3M为摩尔质量,kg/mol;B0A0C0D0E0badefαcghγ为与状态方程相关的系数。

    真实气体状态方程为:

    $ Z = \frac{{pM}}{{\rho RT}} $ (2)

    式中:Z为气体偏差因子。

    在式(1)两端同时乘以M/(ρRT),得到:

    $ \begin{array}{l} Z = 1 + \left( {{B_0}- \frac{{{A_0}}}{{RT}}- \frac{{{C_0}}}{{R{T^3}}} + \frac{{{D_0}}}{{R{T^4}}}- \frac{{{E_0}}}{{R{T^5}}}} \right)\frac{\rho }{M}+ \\ \;\;\;\;\;\;\;\left( {b - \frac{a}{{RT}} - \frac{d}{{R{T^2}}} - \frac{e}{{R{T^5}}} - \frac{f}{{R{T^{24}}}}} \right){\left( {\frac{\rho }{M}} \right)^2} + \\ \;\;\;\;\;\;\;\alpha \left( {\frac{a}{{RT}} + \frac{d}{{R{T^2}}} + \frac{e}{{R{T^5}}} + \frac{f}{{R{T^{24}}}}} \right){\left( {\frac{\rho }{M}} \right)^5} + \\ \;\;\;\;\;\;\;\left( {\frac{c}{{R{T^3}}} + \frac{g}{{R{T^9}}} + \frac{h}{{R{T^{18}}}}} \right){\left( {\frac{\rho }{M}} \right)^2}\left[{1 + \gamma {{\left( {\frac{\rho }{M}} \right)}^2}} \right] \times \\ \;\;\;\;\;\;\;{\rm{exp}}[-\gamma {\left( {\frac{\rho }{m}} \right)^2}] \end{array} $ (3)

    引入(拟)对比密度ρpr、(拟)对比温度Tpr和(拟)对比压力ppr

    $ {T_{{\rm{pr}}}} = \frac{T}{{{T_{{\rm{pc}}}}}}, {p_{{\rm{pr}}}} = \frac{p}{{{p_{{\rm{pc}}}}}} $ (4)
    $ {\rho _{{\rm{pr}}}} = \frac{\rho }{{{\rho _{{\rm{pc}}}}}} = \frac{{{Z_{\rm{c}}}}}{Z} \cdot \frac{{{p_{{\rm{pr}}}}}}{{{T_{{\rm{pr}}}}}} $ (5)

    式中:Tpr为(拟)对比温度;Tpc为(拟)临界温度, K;ppr为(拟)对比压力;ppc为(拟)临界压力, Pa;ρpr为(拟)对比密度; ρpc为(拟)临界密度, kg/m3Zc为临界偏差因子,计算时一般取0.27。

    将式(4)和式(5)代入式(3),整理得到:

    $ \begin{array}{l} Z = 1 + ({A_1}-{A_2}{T_{{\rm{pr}}}}^{-1}-{A_3}{T_{{\rm{pr}}}}^{ - 3} + {A_4}{T_{{\rm{pr}}}}^{ - 4} - \\ \;\;\;\;\;\;{A_5}{T_{{\rm{pr}}}}^{ - 5}){\rho _{{\rm{pr}}}} + {\rm{ }}({A_6} - {A_7}{T_{{\rm{pr}}}}^{ - 1} - {A_8}{T_{{\rm{pr}}}}^{ - 2} - \\ \;\;\;\;\;\;{A_9}{T_{{\rm{pr}}}}^{ - 5} - {A_{10}}{T_{{\rm{pr}}}}^{ - 24}){\rho _{{\rm{pr}}}}^2 + {A_{11}}({A_7}{T_{{\rm{pr}}}}^{ - 1}\\ \;\;\;\;\;\;\; + {\rm{ }}{A_8}{T_{{\rm{pr}}}}^{ - 2} + {A_9}{T_{{\rm{pr}}}}^{ - 5} + {A_{10}}{T_{{\rm{pr}}}}^{ - 24}){\rho _{{\rm{pr}}}}^5 + \\ \;\;\;\;\;\;\;{\rm{ }}({A_{12}}{T_{{\rm{pr}}}}^{ - 3} + {A_{13}}{T_{{\rm{pr}}}}^{ - 9} + {A_{14}}{T_{{\rm{pr}}}}^{ - 18}){\rho _{{\rm{pr}}}}^2(1 + \\ \;\;\;\;\;\;\;\;{A_{15}}{\rho _{{\rm{pr}}}}^2){\rm{exp}}( - {A_{15}}{\rho _{{\rm{pr}}}}^2) \end{array} $ (6)
    $ {\rho _{{\rm{pr}}}} = \frac{{0.27}}{Z} \cdot {p_{{\rm{pr}}}}{T_{{\rm{pr}}}} $ (7)
    $ \begin{array}{l} \;\;\;\;\;\;\;\;{A_1} = {B_0}\frac{{{\rho _{{\rm{pc}}}}}}{M}, {A_2} = \frac{{{A_0}}}{{R{T_{{\rm{pc}}}}}}\frac{{{\rho _{{\rm{pc}}}}}}{M}, {A_3} = \frac{{{C_0}}}{{R{T_{{\rm{pc}}}}^3}}\frac{{{\rho _{{\rm{pc}}}}}}{M}\\ \;\;\;\;\;\;\;{A_4} = \frac{{{D_0}}}{{R{T_{{\rm{pc}}}}^4}}\frac{{{\rho _{{\rm{pc}}}}}}{M}, {A_5} = \frac{{{E_0}}}{{R{T_{{\rm{pc}}}}^5}}\frac{{{\rho _{{\rm{pc}}}}}}{M}, {A_6} = b{(\frac{{{\rho _{{\rm{pc}}}}}}{M})^2}\\ \;{A_7} = \frac{a}{{R{T_{{\rm{pc}}}}}}{(\frac{{{\rho _{{\rm{pc}}}}}}{M})^2}, {A_8} = \frac{d}{{R{T_{{\rm{pc}}}}^2}}{(\frac{{{\rho _{{\rm{pc}}}}}}{M})^2}, {A_9} = \frac{e}{{R{T_{{\rm{pc}}}}^5}}{(\frac{{{\rho _{{\rm{pc}}}}}}{M})^2}\\ {A_{10}} = \frac{f}{{R{T_{{\rm{pc}}}}^{24}}}{(\frac{{{\rho _{{\rm{pc}}}}}}{M})^2}, {A_{11}} = \alpha {(\frac{{{\rho _{{\rm{pc}}}}}}{M})^3}, {A_{12}} = \frac{c}{{R{T_{{\rm{pc}}}}^3}}{(\frac{{{\rho _{{\rm{pc}}}}}}{M})^2}\\ {A_{13}} = \frac{g}{{R{T_{{\rm{pc}}}}^9}}{(\frac{{{\rho _{{\rm{pc}}}}}}{M})^2}, {A_{14}} = \frac{h}{{R{T_{{\rm{pc}}}}^{18}}}{(\frac{{{\rho _{{\rm{pc}}}}}}{M})^2}, {A_{15}} = \gamma {(\frac{{{\rho _{{\rm{pc}}}}}}{M})^2} \end{array} $ (8)

    式(6)即为基于Nishiumi-Saito状态方程导出的新的隐式关系式。式(8)中A1~A15为系数。

    2 偏差因子计算方法

    Poettman率先发表了从Standing-Katz图版(见图 1)上读取的偏差因子数据表(0.2≤ppr≤15.0 & 1.05≤Tpr≤3.00)[37, 52],Katz和Smith沿用了Poettman的数值化成果并对个别数据点进行了更正[53-54]

    图 1     中低压气体偏差因子图版 Figure 1     Compressibility facors of natural gas in the range of 0.20≤ppr≤15.0 & 1.05≤Tpr≤3.00

    然而,发现Poettman数据表(共297×20=5940个数据点)中的5个数据点疑似有误,因为在这些点处,Z值发生了突变。参考这些点附近压力、温度范围内Z的取值,相应作了更正(见表 1)。表 1中,Z1Z2、Z3所在列分别为Poettman、Katz、Smith数据的偏差因子取值,Zsta所在列为本文更正的偏差因子值。

    表 1    5个偏差因子数据点的修改值 Table 1    Five corrected values for Z-factor data

    对于常用的压力范围(即中低压力范围0.2≤ppr≤15.0 & 1.05≤Tpr≤3.00),以更正后的Poettman数值化的偏差因子数据作为标准。类似地,对于高压范围15.0≤ppr≤30.0 & 1.40≤Tpr≤2.80)内的Katz图版(见图 2)[53],同样利用数值化处理结果作为标准数据(此处每条等温线上ppr每隔0.1取一个点,共151×8=1208个数据点)。

    图 2     高压气体偏差因子图版 Figure 2     Compressibility factors of natural gas in the range of 15.0≤ppr≤30.0 & 1.40≤Tpr≤2.80

    利用上述常用压力范围和高压范围的7148个偏差因子数据点,对式(6)作多元非线性回归分析,得到各系数A1~A15的取值见表 2

    表 2    Nishiumi-Saito状态方程的系数 Table 2    Coefficients of the Nishiumi-Saito Equation of State

    式(6)和式(7)反映了偏差因子和对比密度ρpr的隐式关系。采用牛顿迭代法可快速解得Z[55]。首先构造如下函数f(ρpr):

    $ \begin{array}{l} f({\rho _{{\rm{pr}}}}) = 1 + {B_1}\cdot{\rho _{{\rm{pr}}}} + {B_2}\cdot{\rho _{{\rm{pr}}}}^2 + {B_3}\cdot{\rho _{{\rm{pr}}}}^5 + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{B_4}({\rho _{{\rm{pr}}}}^2 + {B_5}{\rho _{{\rm{pr}}}}^4){\rm{exp}}(-{B_5}{\rho _{{\rm{pr}}}}^2)-\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{B_6}\cdot{\rho _{{\rm{pr}}}}^{-1} \end{array} $ (9)
    $ \begin{array}{l} \;{B_1} = {A_1}-{A_2}{T_{{\rm{pr}}}}^{-1}-{A_3}{T_{{\rm{pr}}}}^{ - 3} - {A_4}{T_{{\rm{pr}}}}^{ - 4} - {A_5}{T_{{\rm{pr}}}}^{ - 5}\\ {B_2} = {A_6} - {A_7}{T_{{\rm{pr}}}}^{ - 1} - {A_8}{T_{{\rm{pr}}}}^{ - 2} - {A_9}{T_{{\rm{pr}}}}^{ - 5} - {A_{10}}{T_{{\rm{pr}}}}^{ - 24}\\ {B_3} = {A_{11}}({A_7}{T_{{\rm{pr}}}}^{ - 1} + {A_8}{T_{{\rm{pr}}}}^{ - 2} + {A_9}{T_{{\rm{pr}}}}^{ - 5} + {A_{10}}{T_{{\rm{pr}}}}^{ - 24})\\ \;\;\;\;\;\;\;\;\;\;\;{B_4} = {A_{12}}{T_{{\rm{pr}}}}^{ - 3} + {A_{13}}{T_{{\rm{pr}}}}^{ - 9} + {A_{14}}{T_{{\rm{pr}}}}^{ - 18}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{B_5} = {A_{15}}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{B_6} = 0.27{p_{{\rm{pr}}}}{T_{{\rm{pr}}}}^{ - 1} \end{array} $ (10)

    f(ρpr)关于ρpr的一阶导数:

    $ \begin{array}{l} f\prime ({\rho _{{\rm{pr}}}}) = {B_6} \cdot {\rho _{{\rm{pr}}}}^{-2} + {B_1} + 2{B_2} \cdot {\rho _{{\rm{pr}}}} + {\rm{ }}5{B_3} \cdot {\rho _{{\rm{pr}}}}^4 + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2{B_4} \cdot {\rm{exp}}(-{B_5}{\rho _{{\rm{pr}}}}^2)({\rho _{{\rm{pr}}}} + {B_5}{\rho _{{\rm{pr}}}}^3-B_5^2{\rho _{{\rm{pr}}}}^5) \end{array} $ (11)

    建立牛顿迭代公式[55]

    $ {({\rho _{{\rm{pr}}}})_1} = {({\rho _{{\rm{pr}}}})_0}- \frac{{f[{{({\rho _{{\rm{pr}}}})}_0}]}}{{f\prime [{{({\rho _{{\rm{pr}}}})}_0}]}} $ (12)

    式中:(ρpr)0为上次计算的对比密度;(ρpr)1为本次得到的对比密度; B1~B6为系数。

    结合式(9)~式(12),设置如下迭代步骤求解偏差因子:

    (1) 给定pprTpr,设定计算精度eps和最大迭代次数M

    (2) 假定偏差因子Z0=1, 令(ρpr)1=B6/Z0,迭代次数m=0。

    (3) 将(ρpr)1赋给(ρpr)0

    (4) 利用式(12)求得对比密度(ρpr)1;将m+1赋值给m

    (5) 比较(ρpr)1和(ρpr)0的差距,若到达精度要求或迭代次数超过限制(即abs[(ρpr)1-(ρpr)0] < epsm>M)则终止迭代;否则,继续步骤(3)~(5)。

    (6) 计算偏差因子,Z=B6/(ρpr)1

    3 方法对比和讨论

    利用Standing-Katz图版数值化的5940组数据和Katz图版数值化的1208组数据[37, 52-54],对DPR、HY、DAK和本方法进行误差评价,误差计算式如式(13):

    $ AAE = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left| {\left( {{Z_{{\rm{cal}}}} - {Z_{{\rm{sta}}}}} \right){Z_{{\rm{sta}}}}^{ - 1}} \right|}_i}} $ (13)

    式中:AAE为平均绝对误差,%;Zcal为计算的Z值;ZstaZ的图版数值化值。

    中低压范围(0.2≤ppr≤15.0 & 1.05≤Tpr≤3.00)内的计算误差记为AAE1,相对高压范围(15.0≤ppr≤30.0 & 1.4≤Tpr≤2.8)内的误差记为AAE2,总共7148个数据点的平均绝对误差记为AAE3

    表 3列出了4种偏差因子计算方法的平均绝对误差;表 4~表 6列出了“0.2≤ppr≤15.0 & 1.05≤Tpr≤3.00”以及“15.0≤ppr≤30.0 & 1.4≤Tpr≤2.8”范围内各等温线的计算误差。由表 3~表 6可看出,本方法的AAE1为0.357%,AAE2为0.066%,其计算精度高于其他3种方法,对比低温(尤其是Tpr=1.1)和高压(ppr>15.0)条件下的计算结果,优势更为明显。

    表 3    误差分析 Table 3    Error analysis

    表 4    0.2≤ppr≤15.0 & 1.05≤Tpr≤1.50范围内各等温线的平均绝对误差 Table 4    Isotherm average absolute errors in the range of 0.2≤ppr≤15.0 & 1.05≤Tpr≤1.50

    表 5    0.2≤ppr≤15.0 & 1.60≤Tpr≤3.00范围内各等温线的平均绝对误差 Table 5    Isotherm average absolute errors in the range of 0.2≤ppr≤15.0 & 1.60≤Tpr≤3.00%

    表 6    15.0≤ppr≤30.0 & 1.4≤Tpr≤2.8范围内各等温线的平均绝对误差 Table 6    Isotherm average absolute errors in the range of 15.0≤ppr≤30.0 & 1.4≤Tpr≤2.8%

    图 3~图 10统计了DPR、HY、DAK和本方法在中低压和高压范围内的偏差因子计算误差,图中颜色从蓝到红体现误差由小变大。在中低压(0.2≤ppr≤15.0 & 1.05≤Tpr≤3.00)范围内,4种方法在Tpr=1.05等温线上均存在误差较大的点,图 3~图 6中缺失部分表示误差大于10%的区域。在高压(15.0≤ppr≤30.0 & 1.4≤Tpr≤2.8)范围内,图 7图 9中缺失部分表示误差大于2%的区域。

    图 3     “0.2≤ppr≤15.0 & 1.05≤Tpr≤3.00”范围内DPR方法的误差分布 Figure 3     Error distribution of the DPR method in the range of 0.2 ≤ppr≤15.0 & 1.05≤Tpr≤3.00

    图 4     "0.2≤pp≤15.0 & 1.05≤Tpr≤3.00"范围内HY方法的误差分布 Figure 4     Error distribution of the HY method in the range of 0.2≤ppr≤15.0 & 1.05≤Tpr≤3.00

    图 5     “0.2≤15.0 & 1.05≤Tpr≤3.00”范围内DAK方法的误差分布 Figure 5     Error distribution of the DAK method in the range of 0.2≤ppr≤15.0 & 1.05≤Tpr≤3.00

    图 6     “0.2≤ppr≤15.0 & 1.05≤Tpr≤3.00”范围内本方法的误差分布 Figure 6     Error distribution of the method proposed in this paper in the range of 0.2≤ppr≤15.0 & 1.05≤Tpr≤3.00

    图 7     “15.0≤ppr≤30.0 & 1.4≤Tpr≤2.8”范围内DPR方法的误差分布 Figure 7     Error distribution of the DPR method in the range of 15.0≤ppr≤30.0 & 1.4≤Tpr≤2.8

    图 8     “15.0≤ppr≤30.0 & 1.4≤Tpr≤2.8”HY方法的误差分布 Figure 8     Error distribution of the HY method in the range of 15.0≤ppr≤30.0 & 1.4≤Tpr≤2.8

    图 9     “15.0≤ppr≤30.0 & 1.4≤Trp≤2.8”范围内DAK方法的误差分布 Figure 9     Error distribution of the DAK method in the range of 15.0≤ppr≤30.0 & 1.4≤Tpr≤2.8

    图 10     “15.0≤ppr≤30.0 & 1.4≤Tpr≤2.8”范围内本方法的误差分布 Figure 10     Error distribution of the method proposed in this paper in the range of 15.0≤ppr≤30.0 & 1.4≤Tpr≤2.8

    对于中低压区,4种方法中HY方法的缺失区域最大,在“1.30≤ppr≤2.75 & Tpr=1.05”和“1.50≤ppr≤1.65 & Tpr=1.1”范围内的共计34个点的误差大于10%(DPR有31个点,DAK有29个点);DPR方法的平均绝对误差最大;而本方法的计算精度最高,且误差大于10%的区域最小(只有“1.00≤ppr≤1.45 & Tpr=1.05”范围内的10个点),整体误差也最小。

    对于高压区,DPR和DAK方法在部分高温区域的计算误差大于2%,DAK方法的平均绝对误差最大(AAE2为0.979%),HY方法的误差相对较小但误差分布不平衡,而本方法的误差分布十分平滑且AAE2仅为0.066%。

    4 结论

    (1) 基于Nishiumi修正的BWR状态方程(Nishiumi-Saito方程)导出了15系数偏差因子关系式,进而提出了一种确定气体偏差因子的新方法。

    (2) 对比油气藏工程常用的DPR、HY、DAK方法,该方法的计算效果更好。除了Tpr=1.05等温线上1.00≤ppr≤1.45范围内的10个点的计算误差较大外,该方法既适用于常用压力范围(0.2≤ppr≤15.0 & 1.05≤Tpr≤3.00),亦可应用于高压范围(15.0≤ppr≤30.0 & 1.4≤Tpr≤2.8),在这两个范围内的平均绝对误差分别为0.357%、0.066%,优于前3种常用方法。

    参考文献
    [1]
    STANDING M B. Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems[M]. Dallas: Society of Petroleum Engineers of AIME, 1977: 121-122.
    [2]
    GOLAN M, WHITSON C H. Well Performance[M]. Second Edition. Norway: Prentice Hall, 1991: 21.
    [3]
    GOPAL V N. Gas Z-Factors Equations Developed for Computer[J]. Oil and Gas Journal, 1977, 75(32): 58-60.
    [4]
    TIAB D. Gas Reservoir Engineering[M]. Oklahoma: University of Oklahoma, 2000: Ⅱ.A-32.
    [5]
    KUMAR N. Compressibility Factors for Natural and Sour Reservoir Gases by Correlations and Cubic Equations of State[D]. Texas: Texas Tech University, 2004: 10, 22-23.
    [6]
    AZIZI N, BEHBAHANI R, ISAZADEH M A. An Efficient Correlation for Calculating Compressibility Factor of Natural Gases[J]. Journal of Natural Gas Chemistry, 2010, 19(6): 642-645. DOI:10.1016/S1003-9953(09)60081-5
    [7]
    HEIDARYAN E, SALARABADI A, MOGHADASI J. A Novel Correlation Approach for Prediction of Natural Gas Compressibility Factor[J]. Journal of Natural Gas Chemistry[J]. 2010, 19(2): 189-192. http://www.cnki.com.cn/Article/CJFDTotal-TRQZ201002016.htm
    [8]
    HEIDARYAN E, MOGHADASI J, RAHIMI M. New Correlations to Predict Natural Gas Viscosity and Compressibility Factor[J]. Journal of Petroleum Science and Engineering, 2010, 73: 67-72. DOI:10.1016/j.petrol.2010.05.008
    [9]
    VAN DER WAALS J D. The Equation of State for Gases and Liquids[R]. Nobel Lectures in Physics, 1910: 254-265.
    [10]
    GIGLIO F, LANDOLFI G, MORO A. Integrable Extended Van der Waals Model[J]. Physica D: Nonlinear Phenomena, 2016, 333: 293-300. DOI:10.1016/j.physd.2016.02.010
    [11]
    REDLICH O, KWONG J N S. On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions[J]. Chemical Reviews, 1949, 44(1): 233-244. DOI:10.1021/cr60137a013
    [12]
    SOAVE G. 20 Years of Redlich-Kwong Equation of State[J]. Fluid Phase Equilibria, 1993, 82: 345-359. DOI:10.1016/0378-3812(93)87158-W
    [13]
    MARKOCIC E, KNEZ Z. Redlich-Kwong Equation of State for Modelling the Solubility of Methane in Water Over a Wide Range of Pressures and Temperatures[J]. Fluid Phase Equilibria, 2016, 408: 108-114. DOI:10.1016/j.fluid.2015.08.021
    [14]
    SOAVE G. Equilibrium Constants From a Modified Redlich-Kwong Equation of State[J]. Chemical Engineering Science, 1972, 27(6): 1197-1203. DOI:10.1016/0009-2509(72)80096-4
    [15]
    JANEEK J, Paricaud P, Dicko M, et al. A Generalized Kiselev Crossover Approach Applied to Soave-Redlich-Kwong Equation of State[J]. Fluid Phase Equilibria, 2015, 401: 16-26. DOI:10.1016/j.fluid.2015.04.024
    [16]
    GHANBARI M, AHMADI M, LASHANIZADEGAN A. A Comparison Between Peng-Robinson and Soave-Redlich-Kwong Cubic Equations of State From Modification Perspective[J]. Cryogenics, 2017, 84: 13-19. DOI:10.1016/j.cryogenics.2017.04.001
    [17]
    PENG DINGYU, ROBINSON D B. A New Two-Constant Equation of State[J]. Industrial Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. DOI:10.1021/i160057a011
    [18]
    ACQUA D D, TERENZI A, LEPORINI M, et al. A New Tool for Modelling the Decompression Behaviour of CO2 With Impurities Using the Peng-Robinson Equation of State[J]. Applied Energy, 2017, 206: 1432-1445. DOI:10.1016/j.apenergy.2017.09.118
    [19]
    LOPEZ-ECHEVERRY J S, REIF-ACHERMAN S, ARAUJO-LOPEZ E. Peng-Robinson Equation of State: 40 Years Through Cubics[J]. Fluid Phase Equilibria, 2017, 447: 39-71. DOI:10.1016/j.fluid.2017.05.007
    [20]
    KAMERLINGH ONNES H K. The Equation of State of Gases and Liquids as a Power Series[J]. Archives Néelandaises, 1901, 6: 874-888.
    [21]
    BEATTIE JA, BRIDGEMAN O C. A New Equation of State for Fluids[J]. Proceedings of the American Academy of Arts and Sciences, 1928, 63(5): 229-308. DOI:10.2307/20026205
    [22]
    BENEDICT M, WEBB G B, RUBIN L C. An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures: I. Methane, Ethane, Propane and n-Butane[J]. The Journal of Chemical Physics, 1940, 8(4): 334-345. DOI:10.1063/1.1750658
    [23]
    BENEDICT M, WEBB G B, RUBIN L C. An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures: Ⅱ. Mixtures of Methane, Ethane, Propane, and n-Butane[J]. The Journal of Chemical Physics, 1942, 10: 747-758. DOI:10.1063/1.1723658
    [24]
    ORYE R V. Prediction and Correlation of Phase Equilibria and Thermal Properties With the BWR Equation of State[J]. Industrial & Engineering Chemistry Process Design and Development, 1969, 8(4): 579-588.
    [25]
    STROBRIDGE T R. The Thermodynamic Properties of Nitrogen From 64 to 300 K Between 0.1 and 200 Atmospheres, NBS Technical Note No. 129[R]. Washington D C: the Office of Technical Services, US Department of Commerce, 1962: 1-16.
    [26]
    STROBRIDGE T R. The Thermodynamic Properties of Nitrogen From 114 to 540 R between 1.0 and 3000 psia Supplement A (British Units)[R]. Washington D C: US Department of Commerce, National Bureau of Standards, 1963: 1-16.
    [27]
    HALL K R, YARBOROUGH L. A New Equation of State for Z-Factor Calculations[J]. Oil and Gas Journal, 1973, 71(7): 82-85, 90, 92.
    [28]
    CARNAHAN N F, STARLING K E. Equation of State for Nonattracting Rigid Spheres[J]. The Journal of Chemical Physics, 1969, 51(2): 635-636. DOI:10.1063/1.1672048
    [29]
    MORSY T E. Extended Benedict-Webb-Rubin Equation of State. Application to Eight Fluorine Compounds[J]. Journal of Chemical and Engineering Data, 1970, 15(2): 256-265. DOI:10.1021/je60045a014
    [30]
    STARLING K E, POWERS J E. Enthalpy of Mixtures by Modified BWR Equation[J]. Industrial & Engineering Chemistry Fundamentals, 1970, 9(4): 531-537.
    [31]
    COX K W, BONO J L, KWOK Y C, et al. Multiproperty Analysis. Modified BWR Equation for Methane from PVT and Enthalpy Data[J]. Industrial & Engineering Chemistry Fundamentals, 1971, 10(2): 245-250.
    [32]
    MCFEE D G, MUELLER K H, LIELMEZS J. Comparison of Benedict-Webb-Rubin, Starling and Lee-Kesler Equations of State for Use in P-V-T Calculations[J]. Thermochimica Acta, 1982, 54(1-2): 9-25. DOI:10.1016/0040-6031(82)85060-0
    [33]
    LIELMEZS J. Comparison of Benedict-Webb-Rubin and Starling Equations of State for Use in P-V-T Calculations of Binary Mixtures[J]. Thermochimica Acta, 1989, 152(2): 341-358. DOI:10.1016/0040-6031(89)85403-6
    [34]
    MODISETTE J L. Equation of State Tutorial[C]// Pipeline Simulation Interest Group Annual Meeting, Savannah, 2000: 1-21.
    [35]
    LEE B I, KESLER M G. A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States[J]. AIChE Journal, 1975, 21(3): 510-527. DOI:10.1002/(ISSN)1547-5905
    [36]
    DRANCHUK P M, PURVIS R A, ROBINSON D B. Computer Calculation Of Natural Gas Compressibility Factors Using The Standing And Katz Correlation[C]// Petroleum Society of Canada Annual Technical Meeting, Edmonton, 1973.
    [37]
    STANDING M B, KATZ D L. Density of Natural Gases[J]. Transactions of the AIME, 1942, 146(1): 140-149. DOI:10.2118/942140-G
    [38]
    DRANCHUK P M, ABOU-KASSEM J H. Calculation of Z Factors For Natural Gases Using Equations of State[J]. Journal of Canadian Petroleum Technology, 1975, 14(3): 34-36.
    [39]
    TAKACS G. Comparisons Made For Computer Z-Factor Calculations. Oil and Gas Journal[J]. 1976, 74(51): 64-66.
    [40]
    TAKACS G. Comparing Methods for Calculating Z-factor[J]. Oil and Gas Journal, 1989, 87(20): 43-46.
    [41]
    TIAB D. Gas Reservoir Engineering[M]. Oklahoma: University of Oklahoma, 2000: Ⅱ.37-Ⅱ.41.
    [42]
    李士伦. 天然气工程[M]. 第2版. 北京: 石油工业出版社, 2008: 31-33.
    [43]
    AHMED T. Reservoir Engineering Handbook[M]. 4th Edition. Burlington: Gulf Professional Publishing, 2010: 54-59.
    [44]
    AHMED T. Equations of State and PVT Analysis[M]. 2nd Edition. Cambridge, Massachusetts: Gulf Professional Publishing, 2016: 212-216.
    [45]
    张明禄, 胡建国, 屈雪峰. 应用状态方程计算天然气偏差因子的方法评价[J]. 天然气工业, 2003, 23(2): 69-71. DOI:10.3321/j.issn:1000-0976.2003.02.022
    [46]
    熊钰, 张烈辉, 唐建荣. 混合规则对天然气压缩因子预测精度的影响研究[J]. 石油与天然气化工, 2004, 33(6): 447-449, 452. DOI:10.3969/j.issn.1007-3426.2004.06.019
    [47]
    梁光川, 左果. 基于气体组成的天然气压缩因子计算方法[J]. 石油与天然气化工, 2014, 43(4): 395-400. DOI:10.3969/j.issn.1007-3426.2014.04.011
    [48]
    EZEKWE N. Petroleum Reservoir Engineering Practice[M]. Boston: Pearson Education Inc, 2011: 78.
    [49]
    NISHIUMI H, SAITO S. An Improved Generalized BWR Equation of State Applicable to Lower Reduced Temperatures[J]. Journal of Chemical Engineering of Japan, 1975, 8(5): 356-360. DOI:10.1252/jcej.8.356
    [50]
    MOHR P J, NEWELL D B, TAYLOR B N. CODATA Recommended Values of the Fundamental Physical Constants: 2014*[J]. Journal of Physical and Chemical Reference Data, 2016, 45(4): 043102-1. DOI:10.1063/1.4954402
    [51]
    MOHR P J, NEWELL D B, TAYLOR B N. CODATA Recommended Values of the Fundamental Physical Constants: 2014*[J]. Reviews of Modern Physics, 2016, 88(3): 035009-1. DOI:10.1103/RevModPhys.88.035009
    [52]
    POETTMAN F H, CARPENTER P G. The Multiphase Flow of Gas, Oil, and Water Through Vertical Flow Strings with Application to the Design of Gas-lift Installations[J]. Drilling and Production Practice, API-52-257, 1952, 280-291.
    [53]
    KATZ D L, CORNELL D, VARY J A, et al. Handbook of Natural Gas Engineering[M]. New York: McGraw-Hill Book Company, 1959: 106-107, 710-717.
    [54]
    SMITH R V. Practical Natural Gas Engineering[M]. Second Edition. Tulsa: Pennwell Publishing Company, 1990: 255-277.
    [55]
    刘华蓥. 计算方法[M]. 北京: 北京邮电大学出版社, 2010: 15-16.