高级检索

基于IEO-MKELM模型的重整产品辛烷值软测量方法

Soft sensing method for octane number of catalytic reforming product based on IEO-MKELM model

  • 摘要:
    目的 针对催化重整产品辛烷值测量实时性较差的问题,提出基于改进平衡优化器算法的多核极限学习机(IEO-MKELM)辛烷值软测量模型。
    方法 采用混沌映射、反向学习策略、优化非线性因子、莱维飞行和贪心选择策略优化基础平衡算法,获得具有更高全局和局部搜索能力的改进平衡算法(IEO)。随后将这一改进后的平衡优化算法应用于多核极限学习机(MKELM)多项参数的优化,进而建立了催化重整产品辛烷值软测量模型。
    结果 利用某炼化企业的实测数据对模型精度进行验证,结果表明,由IEO-MKELM模型得到的预测值与实测值间的误差在10−3数量级以下,与其他同类模型相比,IEO-MKELM模型具有更高的预测精度。
    结论 基于IEO-MKELM的辛烷值软测量方法研究对于提高催化重整生产过程的自动化水平具有重要意义。

     

    Abstract:
    Objective  Aiming at the poor real-time performance of octane number measurement of catalytic reforming product, this study proposes a soft sensing model for octane number of reforming product based on the improved equilibrium optimizer-multi-kernel extreme learning machine (IEO-MKELM).
    Method The IEO algorithm used the tent chaotic mapping, opposition-based learning strategy to improve the initial population diversity randomness, introduced the optimized nonlinear factor control strategy, Lévy flight and greedy-choice strategy to improve the accuracy and optimization effect. Then, the IEO algorithm was utilized to optimize the weighted coefficients and other parameters of the MKELM and a soft sensing model for octane number of catalytic reforming product was established based on the data from a real petrochemical plant.
    Result The accuracy of the proposed IEO-MKELM model was validated using actual measurement data from a refining enterprise. The results showed that the error between the predicted values obtained by the IEO-MKELM model and the measured values was below the order of magnitudes of 10−3, indicating higher prediction accuracy compared to other similar algorithm models.
    Conclusion This study is of great significance for improving the automation level of catalytic reforming production process.

     

/

返回文章
返回