引用本文: | 高峰,张春阳,贺云豪,刘其松,宋彬,来兴宇,等. 络合铁脱硫吸收塔中硫磺颗粒沉降特性数值模拟[J]. 石油与天然气化工, 2025, 54(3): 8-15. |
| |
|
|
|
本文已被:浏览 16次 下载 12次 |
 码上扫一扫! |
|
络合铁脱硫吸收塔中硫磺颗粒沉降特性数值模拟 |
高峰1,2,3, 张春阳1,2,3, 贺云豪4, 刘其松1,2,3, 宋彬1,2,3, 来兴宇1,2,3, 兰启奎4
|
1.中国石油西南油气田公司天然气研究院;2.国家能源高含硫气藏开采研发中心;3.国家市场监督管理总局重点实验室(天然气质量控制和能量计量);4.中国石油西南油气田公司蜀南气矿
|
|
摘要: |
目的 研究气-液-固三相复杂体系下反应器底部流场变化对硫磺颗粒沉降特性的影响。方法 基于计算流体力学,采用k-ω-SST湍流模型(液相)和离散相模型(discrete phase model, DPM),对络合铁法脱硫装置吸收塔硫磺颗粒生成的分布及颗粒运动轨迹进行模拟研究。结果 在气体分布器对称分布的情况下,受制于静压分布的影响,硫磺生成量并非均匀分布,距离原料气进气主管线最远、离壁面最近的鸭嘴阀,其气体流量最大,硫磺产量最多;另一方面,随着吸收塔底部富液出口流速的增大,产生的硫磺颗粒在向下沉降的过程中向轴心偏移。当出口流速<0.90 m/s时,硫磺在锥面上的沉积速率和沉积面积随富液出口流速的增大呈直线下降趋势;当出口流速>0.90 m/s时,沉积速率和沉积面积下降趋势减缓。结论 出口流速控制为0.90~1.10 m/s为宜,吸收塔塔底富液采用内循环工艺可有效防止硫磺颗粒的沉积和堵塞。 |
关键词: 络合铁法 脱硫 硫磺颗粒 沉降特性 富液内循环 含硫化氢气体 |
DOI:10.3969/j.issn.1007-3426.2025.03.002 |
分类号: |
基金项目:中国石油天然气集团有限公司科研项目“复杂碳酸盐岩气藏效益上产与提高采收率技术研究”(2023ZZ16-03);中国石油西南油气田公司科研项目“络合铁脱硫溶剂传质性能提升与质量监控技术研究”(2024D106-03-02) |
|
Numerical simulation of sedimentation characteristics of sulfur particles in chelated iron desulfurization absorber |
GAO Feng1,2,3, ZHANG Chunyang1,2,3, HE Yunhao4, LIU Qisong1,2,3, SONG Bin1,2,3, LAI Xingyu1,2,3, LAN Qikui4
|
1.Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan, China;2.National Energy R & D Center of High Sulfur Gas Exploitation, Chengdu, Sichuan, China;3.Key Laboratory of Natural Gas Quality Control and Energy Measurement, State Administration for Market Regulation, Chengdu, Sichuan, China;4.Southern Sichuan Gas District, PetroChina Southwest Oil & Gasfield Company, Luzhou, Sichuan, China
|
Abstract: |
Objective The aim is to study the influence of the flow field change at the bottom of the reactor in the gas-liquid-solid three-phase complex system on the sedimentation characteristics of sulfur particles. Method Based on computational fluid dynamics, the k-ω-SST turbulence model (liquid phase) and discrete phase model (DPM) were adopted to conduct simulation research on the generation distribution of sulfur particles and the particle motion trajectory in the absorber of the chelated iron desulfurization unit. Result In the case of symmetrical distribution of the gas distributor, due to the influence of static pressure distribution, the sulfur generation amount was not uniformly distributed. The duckbill, which was the farthest from the main pipeline of the feed gas inlet and the closest to the wall, had the largest gas flow rate and sulfur output. On the other hand, as the outlet flow rate of rich liquid from the absorber increased, the generated sulfur particles shifted towards the axis during the downward sedimentation process. When the outlet flow rate was less than 0.90 m/s, the deposition rate and deposition area of sulfur on the conical surface showed a linear downward trend with the increase of the rich liquid outlet flow rate. When the outlet flow rate was greater than 0.90 m/s, the downward trend of the deposition rate and deposition area slowed down. Conclusion The outlet flow rate should be controlled in the range of 0.90-1.10 m/s, and the internal circulation process of the rich liquid at the bottom of the absorber can effectively prevent the deposition and blockage of sulfur particles. |
Key words: chelated iron method desulfurization sulfur particles sedimentation characteristic rich-liquid internal circulation H2S-containing gas |
|
|
|
|